

Simulation and Analysis of Point-to-Point RoF System

¹Y. A. Sumaila ²A. Liman, ³A. Hassan B/Kudu, ⁴Hauwa-Kulu Shuaib, ⁵A. Abdulkadir, ⁶A. B. Magaji, and ⁷A. Masanawa

 ^{1,2}(Physics Department, Kano University of Science And Technology Wudil, P. M. B. 3244, Nigeria, ³Computer And Information Technology, Federal University, Dutse Nigeria, ⁴ Physics Department, Nigerian Defense Academy Kaduna Nigeria, ^{5,6,7} Physics Department, Umaru Musa Yar-adua University, Katsina Nigeria.

Date of Submission: 20-03-2023

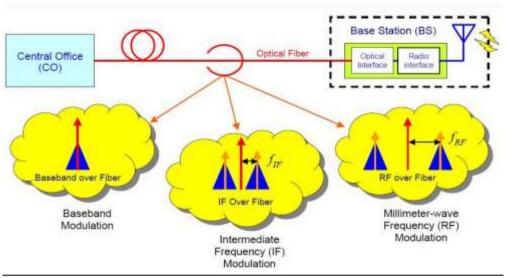
Date of Acceptance: 30-03-2023

ABSTRACT

Wireless coverage of the end-user domain, either at the outdoors or indoors, has become an essential part of broadband communication networks especially now that the whole world is going digital and cashless transaction era is the norm. Unified communication requires that the broadband service transported effectively wirelessly and is everywhere. The objective is to make people more productive. People spend much time trying to communicate with others, either at work, in the market or at home. Transporting their communication signal quicker and efficiently is what matters. Radio over fibre (RoF) is a technology for transporting radio signals (3G, 4G, 5G, Wi-Fi and MiFi etc) and the transmission of cable television signals (CATV) to the radio frequency (RF) signals. Our study is aimed to improve the quality of the RoF not only at network level but also at link level. We found out that the result in this work can assist to improve the throughput performance in the realistic of Wi-Fi or broadband by using a commercially available software simulation technique. Simulation results using HERALD (HElp for RAdio Link Design) software are presented in this paper.

KEYWORDS;- Radio Over Fibre (RoF), RF, Broadband Communication, Unified Communication, 5G

Acknowledgement: The Authors would like to thank the Institution Based Research (IBR) Unit of the Tertiary Institution Trust Fund (TETFund) Nigeria, for sponsoring this work in whole at KUST Wudil, Nigeria. Thanks to the Luigio Morino for his tremendous achievement in developing the clever software utilized in this work.


I. INTRODUCTION

Radio over fibre (RoF) system is a form of an analogue optically modulated RF signals transmitted using an optical fibre from the central station (CS) to a base station (BS) or remote access units (RAUs), [1]. It is a technology of the future currently receiving serious attention due to its ability to provide simple antenna front ends, increased capacity, and wireless access coverage. RoF technique has been considered a cost effective and reliable solution for the distribution of the future wireless access networks by using optical fibre with vast transmission bandwidth capacity, [2], RoF link is used in remote antenna applications to distribute signals for smaller BS or remote sub-BS, [3-5].

New revolution in fifth-generation wireless system, called the (5G) is promising in enhancing the data transfer rate of mobile networks [1-2], this is in terms of its scalability, connectivity range, and the energy efficiency of the new network [4 & 6]. In 2021, in excess of 50 billion devices were assumed to be connected to the global IP network by 2020, [7].

Transport networks will be very important part for the development of 5G networks. It would be constructed using a set of existing technologies, radio-over-fiber (RoF) transmission [8-11] and millimeter wave (MMW) technologies [12-14]. Optical fibre-based wireless systems can, however, transport long distance with high fidelity but at a disadvantage of high cost on the uplink transmitters and needs a lot of optical fibres. Cost is the paramount issue for the wide deployment of this technology.

Typical optical fibre-based transmission system is shown in figure 1 below.

Figure 1: A typical optical fibre-based transmission system, [16].

A Point-to-Point radio-relay link enables communication between two fixed points, by means of radiowave transmission and reception. The link between two terminal radio sites may include a number of intermediate radio sites. The direct connection between two (terminal or intermediate) radio sites is usually referred as a "Radio Hop". A transmission Performance of Analog Radio-over-Fiber Fronthaul for 5G Mobile Networks was reported [2]. They investigated the effects of fiber transmission link like, dispersion, attenuation, launch power, transmission distance, aggregated number of channels. channel bandwidth, and type of modulation. They [2] also, have however, not taken into consideration any rain attenuation in their report. But this paper has considered the rain attenuation.

The demand to have broadband capacity wirelessly has put pressure on wireless communication system to increase both their transmission capacity as well as the coverage. High bandwidth signals over long distances encounter losses while the demand for the long distance transmission is ever increasing. Therefore, require a network on RoF technology as an immediate solution.

This paper presents analysis into the investigations for the transmission performance of poinit -to-point RoF-based for 5G mobile network. Results are presented for KUST Wudil, Kano Nigeria as the test Radio site.

II. MODEL DESCRIPTION

In this work, a typical RoF system is simulated and analyzed using HERALD Software by Luigio Moreno [18].

HERALD (HElp for RAdio Link Design) is a PC program for Windows that assists the radio engineer in the design of point-to-point (multi-hop) microwave links and networks, working in the frequency range from 0.4 to 58 GHz and can be extended to a far higher frequency range.

The HERALD design process is based on well-established design guidelines. Starting from basic hop configuration and link budget, reliable propagation models are applied to deal with the anomalous propagation events of rain, multipath, obstructions, and reflections. Close reference is made to recommendations of the ITU-R, the Radio branch of the International Telecommunications Union, formerly the CCIR.

User-defined antenna and radio equipment libraries allow us to select the items useful to configure the radio hop terminals.

The aim of this study is to analyse and Design a Radio over Fibre (RoF) System for Higher Speed Optical and Data Communication Interconnection Networks using commercial software (HERALD 3.0). A point-to-point radio over fibre architecture is deployed.

The Study Area

The Study Area is Wudil is located Latitude and longitude coordinates are: **11.794242**, **8.839032**.

Wudil is a small city in northern Nigeria, with the population close to 180,000 people. It is the capital city of a small district, Wudil district, and a small transportation knot near the Highway A237. Since the city is situated near Hadejia River, it is also an agricultural spot, with numerous small farms and cattle companies operating in the city. There is a large university in Wudil, the University of Science and Technology [18].

III. RESULT VIEW

The HERALD design process is based on well-established design guidelines. Starting from basic hop configuration and link budget, reliable propagation models are applied to deal with the anomalous propagation events of rain, multipath, obstructions, and reflections. Close reference is made to recommendations of the ITU-R, the Radio branch of the International Telecommunications Union, formerly the CCIR.

User-defined antenna and radio equipment libraries allow us to select the items useful to configure the radio hop terminals.

(a). Site and Hop Parameters(i). Path Profile Report (Alpha-Beta)

Table 1 gives the data for the two particular radio sites, Alpha and Beta, chosen with geographical coordinates. The path profile is specified as a set of points (distance from first site, ground elevation above sea level, and obstruction above ground level if any). Table 2 shows the computed path profile and clearance analysis. The clearance is required to be free from any obstruction.

 Table 1: RoF design parameters and characteristics values; Frequency 11GHz, Length: 34.820Km range, also applicable up to 60GHz.

RADIO SITES:	
ALPHA	ВЕТА
Elevation : 381m	Elevation: 238 m
Antenna Height: 30.0m	Antenna Height: 5.0m

(") T-11-3	D. C1. D A. 1	C1
(ii). Table 2:	Profile Point And	Clearance Analysis

Table 2:	FIOTHE FOIL	Allu Clea	rance Analys	18			
Distan	Elevation(m)	Obstac	Fresnel	K=Kstd=1.	33	K=Kmin=0	.71
ce(Km		le(m)	Radius(m)				
)					r		1
				Norm	Margin(m)	Norm	Margin(m)
				Clearance	(100F1%)	Clearance	(0F1%)
0.031	381		0.9	32.41	28.9	32.35	29.7
0.124	382		1.8	15.33	26.3	15.21	27.9
0.310	375		2.9	11.70	31.0	11.51	33.3
0.403	375		3.3	10.08	29.9	9.87	32.5
0.589	374		4.0	8.30	29.0	8.04	31.9
0.868	370		4.8	7.30	30.3	6.98	33.6
0.961	370		5.0	6.82	29.4	6.49	32.8
1.333	363		5.9	6.59	33.0	6.20	36.6
1.426	363		6.1	6.27	32.2	5.87	35.9
1.612	359		6.5	6.34	34.6	5.92	38.3
1.705	359		6.7	6.08	33.8	5.64	37.5
2.078	351		7.3	6.30	38.7	5.82	42.5
2.171	351		7.5	6.09	37.9	5.60	41.7
2.357	349		7.7	5.96	38.4	5.45	42.2
2.450	347		7.9	6.03	39.6	5.51	43.4
2.543	347		8.0	5.85	38.9	5.32	42.7
2.729	345		8.3	5.76	39.4	5.21	43.2
3.287	337		9.0	5.77	43.0	5.18	46.7
3.380	337		9.1	5.64	42.3	5.04	46.0
3.566	336		9.3	5.48	41.9	4.87	45.5
4.031	327		9.9	5.81	47.4	5.16	50.8
4.124	327		10.0	5.69	46.7	5.03	50.1

4.217	328	10.1	5.48	45.0	4.81	48.4
4.682	321	10.5	5.62	48.6	4.93	51.8
4.868	318	10.7	5.70	50.2	5.00	53.4
5.054	318	10.9	5.50	48.9	4.79	52.0
5.426	311	11.2	5.66	53.2	5.03	56.2
5.519	311	11.3	5.67	52.6	4.93	55.5
5.705	309	11.4	5.67	53.3	4.92	56.1
5.798	310	11.5	5.50	51.6	4.74	54.4
5.984	305	11.6	5.76	55.3	5.00	58.1
6.170	305	11.8	5.59	54.0	4.82	56.7
6.624	304	11.8	5.60	54.4	4.82	57.0

(ii). Hop Report:

A radio hop is described in terms of;

a). Topographical data and terrain description :

b). Radio equipment, antennas and ancillary sub-

systems installed at each radio site

c).Specific aspects on equipment installation and operation, like the Antenna positioning, Frequency used and Use of passive repeaters.

d). Climatic and environmental parameters. Figure 2 below gives the configuration for the hop report between the 2 sites at the given coordinates.

Ferfu		HOP RPT-KUST2_38KM (U	2092) SU	Press	
Poreva	iuation purpo	ses only, NO I for commerc		Page 1	
		HOP REPORT : C	onfiguration		
		ALPHA-B	ETA		
		Frequency 38,000 GHz	Length : 2.500 km		
	O SITES		ALFHA	BETA	
Торон	iqy	Elevation a s.1. [m] Latitude Longbude (.Geodetic system - 13.)	1252 N 32" 05" 25.0" E 7" 23' 30.0"	238 N 13" 05' 30 0" E 7" 28' 0.0"	
Mare A	kritenna p	Code Max Gam (dBi) Installation Height [m] Fiseder Length [m] Azimuth Titl Acque	NA NA 0.0 175' 47' -23' 55'	N A N A 0.0 255*49 23*55	
Rato	Equipment	Code Capacity	NA NA	N A N A	
		VETERS & PROPAGATION MOD Value entered by the user	ELS		
	He	p configuration NOT completed -	Unix Budget NOT compute	£	

Figure 2: Hop configuration report for sites ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E) at 38GHz,2.5 Km.

(iii). Clearance Analysis: The path profile view is completed with a table below, fig. 3, where results on normalized clearance and margins are displayed; indication about compliance with clearance criteria and estimate of obstruction loss are all reported in the figure 3.

International Journal of Advances in Engineering and Management (IJAEM) Volume 5, Issue 3 March 2023, pp: 1468-1479 www.ijaem.net ISSN: 2395-5252

		AL PHA	- INC TA				
	-	warny 12 001 016		2.60 km			
August sates							
AL PILA. EDeception a Antenna He	al 0002es agai: 21.4 m		BETA Flavation a Anterna He	1 20 m			
Horsen	STE AND GLEANAND	P Association					
Distances in my	Geoaticn Ctrate (m) (m)	de Preside	N = 6 1 North Designed	64angin (m) (100/4, P1)	Renta Repris	Ali = 0.03 Margin (n) (0%.71)	
0.000		.18	1818.20	1181.8	909,18	1040.0	
56000-000 C	(201)	67	16.00	04.0	10.07	85.0	
	Deseution Loop - 8.2 general - 6 ve		10.20 *				

Figure 3: Path profile and clearance analysis, 38GHz, 2.5Km for radio sites ALPHA (32' 05''N, 7' 23''E); BETA (13' 5''N, 7' 28''E)

Figures 4 and 5 shows the Network report table and the site report for the radio sites.

NETWOR	K-KUST2_38KM-14	(UNTITLED)				
For Evaluation purposes on	ily, NOT for comme			P	age 1	
	NETWORK				_	
RADIO SITES						
	Bevalor a s.I.	Latitud		Longitude		
ALPHA BETA	1252 m 238 m	N 32' N 13' (Geodetic ty	05'25.0' 05'30.0' stem - A*O	E 7' 23' 30.0' E 7' 28' 0.0'		
RADIO HOPS						
ALPHA-BETA	2.500 km	Frequency 38.009 GHz	>>> / 17¥ 47	359°48	- 8	
RADIO SECTIONS					_	
No Section defined						

Figure 4: Network report for radio sites ALPHA (32'05'',7'23''); BETA (13' 05''N, 7' 28''E at 38GHz,2.5Km range.

International Journal of Advances in Engineering and Management (IJAEM) Volume 5, Issue 3 March 2023, pp: 1468-1479 www.ijaem.net ISSN: 2395-5252

1 3	HOP RPT-KUST2_38	KAN-1 (UNTITLE	0				
For Evaluation purpo	oses only, NOT for a	ommercial use.			Page 1		
1	Anaro Han	aller Herriniagen					
	SIT	EREPORT					
		ALPHA					
Bereffer aut. 1252- Bia Sel. A	 Beographical color Latture 14.32* (2) 	dinales: Geodelic sy 126.0° Longflad a sile: Theoletic syst 126.0° Longflad	niem, Ekwaltor a. E. 71 27 301	12" UN 20.8"			
INSTALLED ANTENDO	48						
Other the Dode	Freq Cost MD (3Hz)	Anterne Dole	Height Asim	er Ta Po Jöngi	1491	Den. M	
BETA.	at applices M	(les/04.20	2.4 1787.4	e -29*64 3	40.0	0.0	
		BETA					
Hauster and 1 218 - Brachet B	Lainute N 1210 Coord used for th	dinates Georgiale a 100 ° Longite 5 ste Geodelic syst 100 ° Longitet	e & P-20-0.0 Art. Latica: N	(Hefau 13" 05.30.7"	turitsi Longtus		
INSTALLED ANTENNA	si i						
Of the Date Code	Pres Cell MD (CR2)	Anterna Date	Hapt Am	In TR Pr	(044 [88]	37	
ALPHA.	38.050000 Ni	ZXY-SIDD'S	24 2074	r 23°87 D	+40	0.6	

Figure 5: Site report for Geodetic system of ALPHA (32' 05''N,7' 23''E); BETA (13' 05''N, 7' 28''E

- (iv). Antenna radiation pattern: Point-to-point radio hops usually make use of high-gain directive antennas, which offer several advantages:
- a) both Transmission and Reception : the antenna gain is maximized in the desired direction.

Instald Washerst Americanion - D

- b) Transmission : the emitted radio energy is focused toward the receiver, thus reducing the emission of interfering radio energy in other directions;
- c) Reception: the receiver sensitivity to interfering signals coming from other directions is reduced.

- 0 X

	PRPT-KUST2_38KM [UNTITLE		12000 (P422	
For Evaluation purposes	only, NOT for commercial use		Page 1 (b)	
20	mittel s(+exk,07.5) 2. (Nets) (4 Dec)	24		
	HOP REPORT : Perfor	mance		
	ALPHA-BETA			
	Frequency 38.900 GHz Length	2.500 km		
LINK BUDGET	Tx Site Rx Site	ALPHA BETA	BETA ALPHA	
Tix Power (dBm) Tix Losses	Branching and/or Connectors (dB) Feeder (dB)	15.0 0.00 0.0	16.0 0.00 0.0	
Power at Tx Antenna (dBm) Tx Antenna Gain (dBi)	reeve (up)	16.0 40.0	16.0	
Free Space Loss (dB) Propagation Losses	Obstruction Loss (dB) Armspheric Absorption (dB) Additional Loss (dB) Total (dB)	- 1993 - Ja	32.0 0.0 0.0 0.0	
Rx Astenna Gan [dB] Net Path Loss (dB)		44.0	40.0	
Power at Rx Antenna (dEm) Rx Losses	Feader (dB) Branching and/or Connectors (dB)	-32.0 0.0 0.0	-32.0 0.0 0.00	
Rx Power (dBm) Rx Power (80% of time) (dB (estimate from Frequency a	n) Id Hop Length, ITU-R Rep. 338-5)	-32.0 -32.5	-32.0 -32.5	
Receiver Threshold [dBm] (Threshold Degradation	ister= 1.00e-003 Interference (dB) Reflections (dB)	-78.0 0.0 0.0	-78.0 0.0 0.0	

DOI: 10.35629/5252-050314681479 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 1473

Figure 6; Hop performance report for ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E) Figure 6 is the hop report performance for the chosen site and fig. 7 shows the corressponding link profile at 38GHz tranmitted for 2.5 Km without any reflection. Transmission with reflection signal curve is shown in fig. 8.

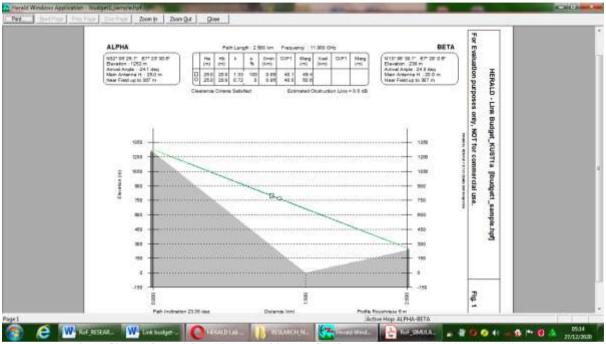


Figure 7: Path profile graph at 38GHz, 2.5Km without reflections; ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E).

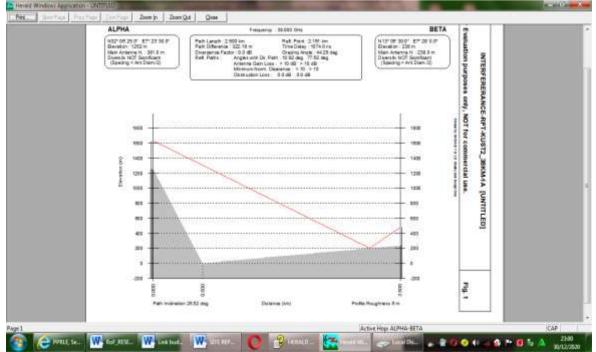


Figure 8: Path with reflections @ 38GHz, 2.5 Km, ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E). The Simulation results for the rain availability/unavailability for the 2 radio site is as in fig. 9 below.

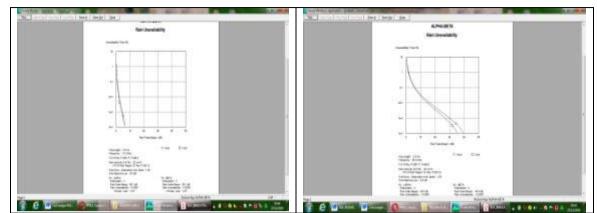


Figure 9: Simulation results for the rain availability/unavailability at 11GHz and 38GHz, 2.5 Km, respectively with ALPHA (32' 05''N, 7' 23''E); BETA (13'05''N, 7' 28''E).

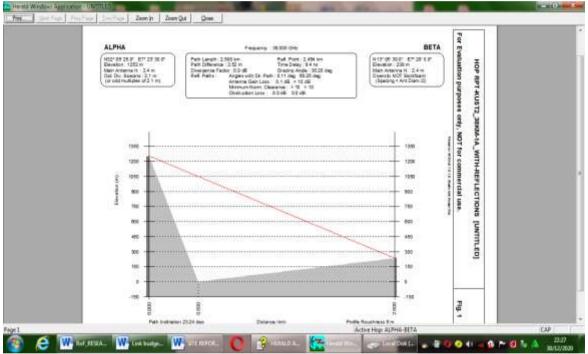


Figure 10; Transmission link showing clearance at 38GHz, 2.5 Km, ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E).

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 3 March 2023, pp: 1468-1479 www.ijaem.net ISSN: 2395-5252

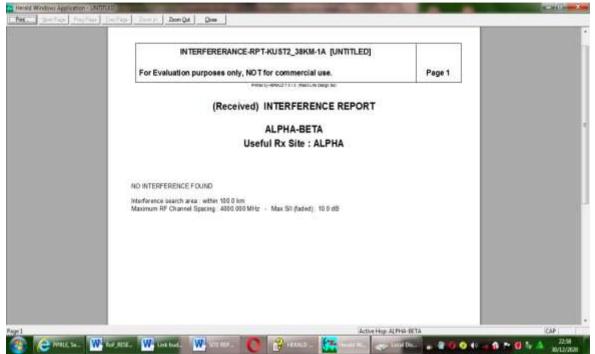


Figure 11: Interference report for 38GHz, 2.5 Km, ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E).

levation a.e.l. 0 m						SIL	EREF	PORT	
levation a.s.l. 0 m							ALPH	A	
		dinates: Geodetic sy 5 25 0° Longtud			: System	1984			
ISTALLED ANTENNAS									
	req Cod MD	Artenna Codo		Azmati	TR	Pol		Dam.	
	GH2 0000000 M	ZY0-1120/S	[m] 100.0	88° 54°	[deg] -0" Z	D	[(Eb]) 84.10	[m] 2.0	
							BET	4	
Selation a s 1 0 m	Geographical coor Latitude : N 13º 05	dinates Geodetic sy 7 36 0° Longitud	stan. Wo e E 71	rid Geodetic 2010 81	: System	1964			
ISTALLED ANTENNAS :									
	ing Cod MD	Antenna Code		Azimetri	TR	Pol		Diam.	
LPHA 111 HARLIE 160	CCCCCCC M CCCCCCCC M	ZYX-1120/S ZXY-1510/S Garr/040-38	108.0 8.0	268° 65' 200" 19'	-0" Z 2" 11	D	44.8 41.1 40.0	20 1.0 0.4	
LPHA 111 HARLIE 160	0000000 M	ZI(Y-1510/S	8.0		3' 11	D	41.1	1.0	

Figure 12: Site report data for Geographical sites at varied frequencies, 2.5 Km, ALPHA (13' 05''N, 7' 23''E); BETA (13' 05''N, 7'28''E).

International Journal of Advances in Engineering and Management (IJAEM) Volume 5, Issue 3 March 2023, pp: 1468-1479 www.ijaem.net ISSN: 2395-5252

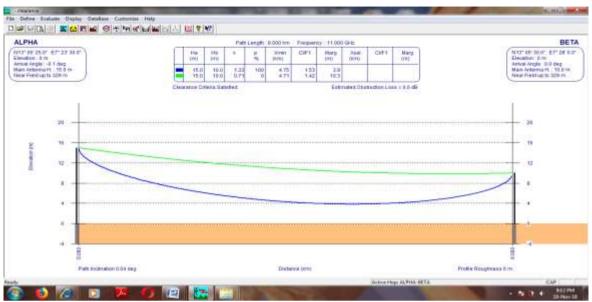
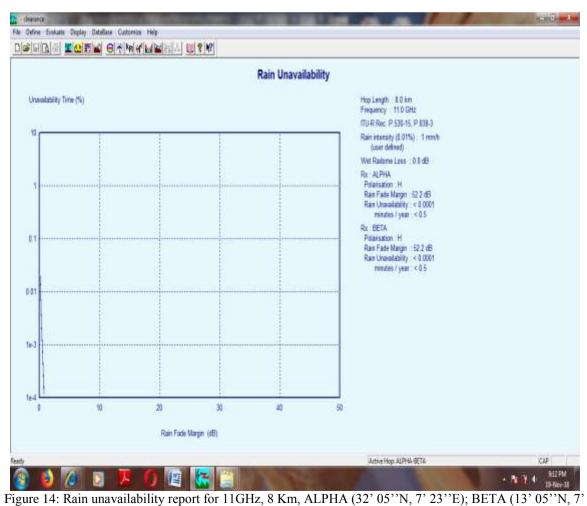



Figure 13: Transmission link for 11GHz, 8 Km, ALPHA (32' 05''N, 7' 23''E); BETA (13' 05''N, 7' 28''E), antenna placed on the ground, no reflection.

28''E).

IV. CONCLUSION

Simulation and analysis of a poin-to-point RoF system is presented. In this paper, HERald software is used to evaluate the performance of a point-to-point system. The RoF so proposed is so simple that it reduces the system installation and hence, the cost. The path profile and the transmission clearance as shown in the figures 8, 10 and 13, indicates obstacle free propagation of the broadband wireless radio signals at up to 2.5KM.

Using the HERald Simulation, the performance of transmitting a radio communication signal through a point-to-point link was investigated. This was attained by using the antenna and radio equipment libraries which allow us to select the items useful to configure the radio hop terminals.

REFERENCE

- Vandana Yadav, A.K. Jaiswal and Mukesh Kumar, "Radio over Fiber Technology". IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 3, Ver. I (May - Jun. 2014), PP 83-87 www.iosrjournals.org.
- [2]. Sara S. Jawad, Raad S. Fyath, "Transmission Performance of Analog Radio-over-Fiber Fronthaul for 5G Mobile Networks", International Journal of Networks and Communications, 2018, 8(3): 81-96. DOI: 10,.5923/j.ijnc.20180803.0
- [3]. R. Karthikeyan and Dr. S. Prakasam, "A Survey on Radio over Fiber (RoF) for Wireless Broadband Access Technologies", International Journal of Computer Applications (IJCA) (0975-8887), Volume 64, No. 12, February (2013).
- [4]. R. Karthikeyan and Dr. S. Prakasam, A Review – OFDM RoF (Radio over Fiber) System for Wireless Network, International Journal of Research in Computer and Communication Technology, Vol 3, Issue 3, March-(2014).
- [5]. Ajay Kumar Vyas, Dr. Navneet Agrawal, "Radio over Fiber: Future Technology of Communication," International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), vol. 1, Issue 2, July – August 2012. ISSN: 2278-6856.

- [6]. Zhang S., Wu Q., Xu S., and Li G. Y., "Fundamental green tradeoffs: progresses, challenges, and impacts on 5G networks," IEEE Communications Surveys and Tutorials, vol. 19, pp. 33-56, (2017).
- [7]. Hasan N. U., Ejaz W., Ejaz N., Kim H. S., Anpalagan A. and Jo M., "Network selection and channel allocation for spectrum sharing in 5G heterogeneous networks", IEEE Access, vol. 4, pp. 980-992, (2016)..
- [8]. Ranaweera C., Wong E., Nirmalathas A., Jayasundara C. and Lim C., "5G C-RAN With Optical Fronthaul: An Analysis From a Deployment Perspective", IEEE Journal of Lightwave Technology, vol. 36, no. 11, pp. 2059-2068, (2018).
- [9]. Akyildiz I. F., Lin S. C., and Wang P., "Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation," Computer Networks, vol. 93, no. 1, p. 66– 79, December, (2015).
- [10]. Ataee M. and Mohammadi A., "Energyefficient resource allocation for adaptive modulated MIMO–OFDM heterogeneous cloud radio access networks", Wireless Personal Communications, vol. 95, no. 4, pp. 4847-4866, August, (2017).
- [11]. Iezekiel S., "Radio-over-fiber technology and devices for 5G: an overview", Broadband Access Communication Technologies, vol. 9772, 2016.
- [12]. Rashed A. N. and. Tabbour M. S, "Suitable optical fiber communication channel for optical nonlinearity signal processing in high optical data rate systems", Wireless Personal Communications, vol. 97, no. 1, pp. 397– 416, November, (2017).
- [13]. A. Ichkov, V. Atanasovski, and L. Gavrilovska, "Potentials for application of millimeter wave communications in cellular networks", Wireless Personal Communications, vol. 92, no. 1, pp. 279–295, January 2017.
- S. A. Haider, M. J. Zhao, and I. Ngebani, "MIMO beamforming architecture in millimeter wave communication systems", Wireless Personal Communications, vol. 97, no.2, pp. 2597–2616, November 2017.
- [15]. Y. Niu, Y. Li, D. Jin, Su, and A. V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges", Wireless

DOI: 10.35629/5252-050314681479 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 1478

Networks, vol. 21, no. 8, pp. 2657-2676, November 2015.

- [16]. M. Tesanovic and M. Nekovee, "mmWave-based mobile access for 5G: key challenges and projected standards and regulatory roadmap", Global Communications Conference (GLOBECOM), California, USA, (2015).
- [17]. <u>https://www.openstreetmap.org</u>, accessed 9th February, 2021.
- [18]. Luigio Moreno, <u>www.radioengineering.org</u>. Accessed 15th November, 2017.